Mine waste rock poses significant environmental challenges. Evaluating management and reclamation options is particularly complex because of the wide particle size distribution, the non-uniform distribution of acid-generating and buffering minerals, and the variable contribution of the different particle size fractions to acid mine drainage (AMD) generation. Reactive transport simulations can be useful to complement and overcome the limitations of laboratory and field experiments. However, predicting field-scale and long-term geochemical behavior of waste rock requires a better understanding of numerical parameters scale-up. In this study, three waste rocks, with different mineral composition and particle size distribution, were separated into different fractions and tested in the laboratory. Kinetic tests were used to calibrate numerical models and adjust minerals’ effective kinetic rate constants to match measured …